Metallation of a Crown Thioether Ligand. Synthesis, Structure and Reactivity of $[Pt(L1)][BF₄]$ and Structure of $[PtI₂(L1)][BF₄]$ (L¹ = 2,6,10-Trithia[11]-*m*-benzenophane)

Garry S. Hanan, James E. Kickham and Stephen J. Loeb*

Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada, N9B 3P4

Metallation of L¹ results in formation of the square-planar, crown thioether complex [Pt(L1)][BF₄] 1; the versatility of this S_3C donor ligand is demonstrated by substitution for the central S donor and oxidative-addition to octahedral complexes of PtIV.

A wide variety of crown thioether complexes have been reported recently and the stability and redox properties of these complexes appear to be partly dependent on the sulphur coordination sphere. **14** The functionalization of derivatization of these thioether macrocycles must certainly be one of the next steps in the evolution of their chemisty.^{5,6} We report herein the first example of a metallated crown thioether and a rare example of a macrocyclic complex containing a direct M-C bond.

Fig. 1. Perspective ORTEP drawing of the [Pt(L1)]+ cation of **1** showing the atom numbering scheme. Significant bonding parameters are Pt-S(1) 2.255(6), Pt-S(2) 2.365(5), Pt-S(3) 2.266(6), Pt-C(1) 1.99(3) \hat{A} ; S(1)-Pt-S(2) 98.2(2), S(2)-Pt-S(3) 94.3(2), S(1)-Pt-C(1) $170.4(6)$ °. 83.0(9), **S(** 3)-Pt-C(1) 86.4(9), **S(** 1)-Pt-S(3) 163.6(2), S(2)-Pt-C(1)

The reaction of equimolar amounts of L^1 and $[PtCl_2(cod)]$ $(cod = cycloocta-1,5-diene)$ in the presence of AgBF₄, in refluxing MeCN, yields $[Pt(L^1)][B\dot{F}_4]$ 1, as a colourless crystalline solid. \dagger ¹H and ¹³C \dagger ¹H \dagger NMR spectroscopy indicate that metallation of the aromatic ring of L^1 has occurred. \ddagger In particular, the absence of a ligand proton resonance $(\delta$ 7.43) and the presence of a large 195 Pt coupling (854.6 Hz) to a

downfield shifted ¹³C resonance (δ 157.9) are consistent with the formation of a Pt-C bond at the 2-position of the aromatic ring. Recrystallization from MeCN affords crystals suitable for X-ray diffraction.§ The X-ray structure verifies (Fig. 1) that the Pt atom is in a square-planar P_tS_3C environment. The Pt–S distances to the mutually *trans* S atoms are Pt–S (1) , 2.255(6) and Pt-S(3), 2.266(6) Å but the Pt-S(2) distance *trans* to the Pt–C(1) bond is significantly longer, 2.365(5) \AA , owing to the strong *trans* influence of the aromatic group. The Pt– $\tilde{C}(1)$ distance is 1.99(3) Å.

Although the Pt^{II} centre is contained in a macrocycle with a relatively rigid $-SCH_2(C_6H_4)CH_2S-$ fragment, a pathway for reaction chemistry is available via labilization of the Pt-S(2) bond and the flexibility of the $-SCH_2CH_2CH_2CH_2CH_2CH_2S-$ linkage. Simple substitution reactions were attempted with two-electron donor molecules such as CO, C_2H_4 , RC=CR (R = Ph or CO₂Me), and PPh₂Me. The results of these reactions indicate that formation of adducts of the type $[Pt(Y)(L^1)]^+$ are possible, but only strong donors such as $Y = \text{PPh}_2\text{Me}$ can successfully compete with S(2) for the coordination site, allowing isolation of the adduct. ${}^{13}C{^1H}$ NMR chemical shifts for the $-SCH_2CH_2CH_2SCH_2$ - CH_2CH_2S - chain atoms of $[Pt(PPh_2Me)(L^1)][BF_4]$ 3 suggest that the phosphine ligand substitutes for S(2) resulting in a square-planar complex in which the central S(2) atom is exodentate and the methylene chain is folded away, perpendicular to the PtS₂P plane (Scheme 1). \ddagger

This demonstrated flexibility of L1 suggests that **1** might also accommodate the necessary structural changes required for oxidative addition to complexes of PtIV with either cis- or trans-addition geometry. Reaction of **1** with one equivalent of I_2 yielded the Pt^{IV} oxidative-addition product cis-[PtI₂(L¹)]-[BF,] **2.\$** Recrystallization of **2** from MeCN affords crystals suitable for X-ray diffraction.§ The X-ray structure shows

 \dagger The crown thioether ligand 2,6,10-trithia[11]-m-benzenophane was prepared by the Cs⁺ mediated cyclization⁷ of either α, α' -dibromo-mxylene and 4-thia-heptane-1,7-dithiol or m -xylene- α, α' -dithiol and **4-thia-heptane-l,7-ditosylate.** Both reactions produced ligand in 60-75% yield.

^{\$} *Spectroscopic data,* NMR *(6* in ppm, JIHz). L1 (CDC13, 300 K), 'H: 7.43 **(s,** lH, Ar), 7.17-7.25 (m, 3H, Ar), 3.70 (s, 4H, benzylic), 2.48 $(t, 4H, 2J7.1, SCH₂), 2.38 (t, 4H, 2J7.0, SCH₂), 1.58 (m, 4H, CH₂);$ 13C{lH}: 139.49, 129.35, 128.75, 127.74 (Ar), 36.88 (benzylic), 31.24 (m, 3H, Ar), 4.91 (d, 2H, *'J* 15.9, *3J* 70.4, benzylic), 4.41 (d, 2H, 2J 15.9, benzylic), 3.67 (m, 2H, ${}^{3}J_{\text{PtH}}$) 81.1, SCH₂), 3.12–3.33 (m, 4H, SCH2), 2.89 (m, 2H, SCHz), 2.60 (m, 2H, **CH2),** 2.00 (m, 2H, CH2); ¹³C{¹H}: δ 157.9 (¹J_{PtC} 854.6), 147.36 (²J_{PtC} 111.1), 126.57, 122.08 (³J_{PtC} < 30, Ar), 52.50 (³J < 30, benzylic), 38.59 (³J_{PtC} 23.5, SCH₂), lH: 7.27 (m, 2H, Ar), 7.11 (m, lH, Ar), 4.93 (m, 4H, benzylic), 3.45 35.75 *(3J* < 20, SCH2), 28.22 *(3Jpt~* 29.9, CH2). **2:** (CH3CN, 300 **K),** $(m, 2H, SCH₂), 3.37 (m, 4H, SCH₂), 3.10 (m, 2H, SCH₂), 2.89 (ddd,$ 2H, ${}^{3}J_{\text{PtH}}$ 60.0 CH₂), 2.41 (m, 2H, CH₂); ¹³C{¹H}: δ 149.61 (¹J_{PtC}) 634.0), 144.79 (²J_{PtC} 51.8), 132.70, 128.40 (³J_{PtC} < 30, Ar), 48.33 $(3J_{\text{PrC}} < 20, \text{benzylic})$, 34.30, (SCH₂), 32.74 (SCH₂), 21.99 ($3J_{\text{PrC}}$ 19.5, CH2). **3:** (CD3CN, 300 K), 1H: 7.67 (m, 4H, PPh2Me), 7.53 (m, 6H, PPh2Me), 7.17 (m, 3H, L1 Ar), 4.92 (d, 2H, *2J* 17.0, benzylic), 4.43 (d, ²J 17.0, ³J_{PtH} 37.0 benzylic), 3.14 (m, 2H, SCH₂), 2.54 (m, 6H,), 2.32 (m, 4H), 1.77 (br s, 3H, PMe); ¹³C{¹H}: δ 169.1 (¹J_{PtC} 904.8, ²J_{PC} 103.3, L¹), 150.10 (²J_{PtC} 105.6, L¹), 133.43 (d, ¹J_{PC} 48.3, PPh₂Me), 133.45 ($2J_{\text{PC}}$ 10.6, PPh₂Me), 132.38 (PPh₂Me), 126.97 (L¹), 122.21 $(L¹)$, 52.65 (benzylic), 40.27 (SCH₂), 29.37 (SCH₂), 28.59 (³J_{PtC} 38.1, (CH₂S), 30.25, (CH₂S), 29.88 (CH₂). **1:** (CD₃CN, 300 K), ¹H: 7.12 CH₂); ³¹P{¹H}: -0.34 (¹J_{PtP} 1950.4).

[§] Crystal data for **1**, $[C_{16}H_{19}PtS_3][BF_4]$: monoclinic, $P2_1/c$, $a =$ 8.373(1), $b = 21.784(7)$, $c = 9.517(4)$ Å, $\beta = 95.09(2)$ °, $U =$ 1729.1(16) Å³, $Z = 4$, $D_c = 2.172$ g cm⁻³, μ (Mo-K α) = 85.79 cm⁻¹. Rigaku AFC6 diffractometer; 1885 unique reflections with F_0^2 > $3 \sigma F_{\rm o}^2$, $R = 6.93\%$, $R_{\rm w} = 6.99\%$.

Crystal data for **2**, $[C_{16}H_{19}I_2PtS_3][BF_4]$: monoclinic, $P2_1/n$, $a =$ 11.253(4), $b = 11.120(2)$, $c = 16.558(4)$ Å, $\beta = 99.53(3)$ °, $U = 2043(2)$ \AA^3 , $Z = 4$, $D_c = 2.662$ g cm⁻³, μ (Mo-K α) = 102.56 cm⁻¹. Rigaku AFC6 diffractometer; 2464 unique reflections with $F_0^2 > 3 \sigma F_0^2$, $R =$ 6.50%, $R_w = 6.95\%$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors. Issue No. 1.

Fig. 2 Perspective ORTEP drawing of the $[PtI_2(L^1)]^+$ cation of 2 showing the atom numbering scheme. Significant bonding parameters are Pt-I(1) 2.739(2), Pt-I(2) 2.681(2), Pt-S(1) 2.325(5), Pt-S(2) 2.346(5), Pt-S(3) 2.331(5), Pt-C(1) 2.04(2) Å; S(1)-Pt-S(2) 99.0(2), $S(2)$ -Pt-S(3) 89.4(02), $S(1)$ -Pt-C(1) 86.1(6), $S(3)$ -Pt-C(1) 83.8(6), S(1)-Pt-S(3) 166.2(2), S(2)-Pt-C(1)($84.6(5)^\circ$.

(Fig. 2) that addition of I_2 to Pt has occurred to produce an octahedral Pt^{IV} species with a PtI₂S₃C coordination sphere in which the I atoms are mutually *cis* and L¹ is folded such that $S(2)$ is coordinated perpendicular to the PtIS₂C plane. The Pt-S distances to the mutually trans S atoms are Pt-S(l), 2.325(5) and Pt-S(3), 2.331(5) Å and the Pt-S(2) distance trans to $I(2)$ is 2.346(5) Å. The Pt-I distances are Pt-I(1) 2.739(2) and Pt-1(2) 2.681(2) **8,** with the former reflecting the trans-influence of the aromatic group similar to that observed for $S(2)$ in 1. The Pt–C(1) distance of 2.04(2) Å is only slightly longer than that found for **1.**

There are a number of open-chain ligand systems of the type $XCH_2C_6H_4CH_2X$ in which $X = NMe_2$,⁸ SMe⁹ and PBut₂.¹⁰ These systems have incorporated metallation of the central aromatic ring carbon and each displays some interesting chemistry related to the unique X_2C donor set. The incorporation of this type of framework into a thioether macrocycle has great potential for reaction chemistry as demonstrated by **1.** The substitution and oxidative addition reactions outlined herein, for **1,** can be thought of as models for essential reaction pathways required in catalytic chemistry. For a square-planar 16-electron complex to participate in a catalytic cycle there must be reaction pathways that allow for **a** single-site dissociation and substrate binding as well as cis-oxidative addition and reductive-elimination.'' The formation of **2** and **3** from 1 demonstrates that complexes of $L¹$ can accommodate these pathways. Complexes of \mathbf{L}^1 with more active metals such as Rh^I, Ru^{II} and Ir^I have the potential for exhibiting catalytic chemistry employing a thioether macrocycle and this possibility is being investigated.

We thank the NSERC of Canada for financial support of this research.

Received, 27th *March* 1991; *Corn. 11014881*

References

- 1 **S.** R. Cooper, *Acc. Chem. Res.,* 1988, **21,** 141.
- 2 M. Schroder, *Pure Appl. Chem.,* 1988, **60,** 517.
- 3 **A. J.** Blake and M. Schroder, *Adv. Inorg. Chem.,* 1990, **35,** 1.
- 4 **S.** R. Cooper and **S.** C. Rawle, *Struct. Bonding,* 1990, **72,** 1.
- *⁵*J. Buter, R. M. Kellogg and F. van Bollhuis, *J. Chern. Soc., Chem. Commun.,* 1990, 282.
- 6 W. N. Setzer, E. L. Cacioppo, Q. Guo, G. J. Grant, D. D. Kim, J. L. Hubbard and D. G. VanDerveer, *Inorg. Chem.*, 1990, 29, 2672.
- 7 B. de Groot, G. R. Giesbrecht, **S.** J. Loeb and G. K. H. Shimizu, *Znorg. Chem.,* 1991, **30,** 177; J. Buter and R. M. Kellogg, *Org. Synth.,* 1987, *65,* 150, and reference cited therein.
- 8 G. van Koten, J. Terheijden, J. **A.** M. van Beek, I. C. M. Wehman-Ooyevaar, F. Muller and C. H. Stam, *Organometallics,* 1990, **9,** 903, and references cited therein.
- 9 J. Dupont and M. Pfeffer, *J. Chem.* SOC., *Dalton Trans.,* 1990, 3193, and references cited therein.
- 10 C. J. Moulton and B. L. Shaw, J. *Chem. SOC., Dalton Trans.,* 1976, 1020, and references cited therein.
- 11 J. P. Collman, L. **S.** Hegedus, J. R. Norton and R. J. Finke, *Principles and Applications of Organotransition Metal Chemistry,* University Science Books, Mill Valley, USA, 1987.